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Note 

Poisson’s Equation, Hexagonal Grids and FFT Methods: 
Periodic Boundary Conditions 

1. INTRODUCTION 

In a recent article Pickering [l] described a fourth-order method for solving the 
discrete Poisson equation on a regular hexagonal grid using FFT techniques. The 
model problem considered in that article assumed Dirichlet boundary conditions 
and the results obtained were compared with those obtained on a rectangular grid 
and also with the results derived from other algorithms, notably Christiansen and 
Hackney [2] and Houstis and Papatheodorou [3]. The conliguration of the grid 
used in [I], in which each hexagon is divided into equilateral triangles of side h, is 
shown in Fig. 1 and the approximation to Poisson’s equation 

was written in the form 
V2d(x, Y) = q(x, 2’1, (1) 

where 

= & + O(h6) (i’ 1, 2, . ..) n;j= 1, 2, . ..> J+ 1 ), 

Qi,j= 3h’q,i/2 + 3h’ V2q,j/32, 

(2) 

n is odd, and J is even. 
The purpose of this note is to demonstrate how the techniques developed in [I] 

can be extended to deal with the cases where the boundary conditions are periodic 
in the j direction and where the boundary conditions are periodic in both the i and j 
directions. The relevant equations are given in Sections 2 and 3. The first of these 
cases was briefly outlined in [l], whereas the second has not previously been con- 
sidered. Numerical illustrations are given in Section 4 for both types of boundary 
conditions. 

2. PERIODIC CONDITIONS IN THEN DIRECTION 

Here we consider solving Poisson’s equation over the grid shown in Fig. 1 using 
the finite-difference relation (2) with periodic conditions in the j direction and 
Dirichlet conditions in the i direction. 
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FIG. 1. The solution domain and finite difference molecule 

For j even we define 

4i = W.,’ h,j, ...> ALii’ 

rj= (Qt.;, Q3,j, ...) Qn.j)’ 

and for j odd, 
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The vectors (3) have III = (n + 1)/Z components and the vectors (4) have m - 1 
components. Hence for j even, relation (2 j may be written as 

and for j odd, 

where 

B= 

and 

‘1 0 . . . 0’ 

ilO.. 
0110’0 
0 . . . 

0 . ’ 0 1 1 
,o . . . 0 1. 

(7) 

ro*=ro-(~O.J+l+~O,l,O,...rO,~n+I.J+l+~,l+l,I)T 

r,,*=rj-(~o,i-I+~o.j+I,O ,..., O,~n+L.j~L+~,r+L,j+I)T 

(j= 2, 4, . ..) J). 

(8) 

(9) 

The grid point values of 4 in (8) and (9) are known boundary values and the 
periodicity of 4 in the j direction has been used in (8). Thus, following the develop- 
ment in [ 11, the vectors \vi may be eliminated and, for a domain which is periodic 
in the j direction, we obtain the equations 

where 

R,* = 6r,* - (rz* + rJ*) + B(s, + sJ+ ,), 

R)=6r.:-(r,*_,+r~+,)+B(sj_,+sj+,), 

(j-2, 4,..., J-2) 

(11) 
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RT=6rf- (r0*+rT~7)+R(sJ~i+5J+l). 

U=2(H- 151), V= HS 161, 

and 

H=BB’-4I= 

-3 1 0 . . 0 
1 -2 1 ~ 

0 l-2 IO’ 0 
. 

0 . 0 l-2 1 
0 . 0 1 -3 
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(12; 

where I is the unit matrix of order ~1. 
By expanding +j and R,? in terms of the eigenvectors of H Cl], systems of cychc 

pentadiagonal equations are obtained for the appropriate Fourier harmonics. 
These, equations may be solved using an algorithm given by Benson and Evans [4] 
and the 4,‘s synthesized in the usual manner. The solution for j odd may be 
recovered by solving 

-6~1 +w3 +v~+~=~,--~Gh+4a 
v.i~z-6vj+v.,+2 =s,-B=b$-, ++,+l) (141 

(j= 3, 5, ..~~ J- 1) 

WI +WJ~i-6WJ+,=s,+,-Br(~,+cb,). 

These equations immediately decouple into m - 1 cyclic tridiagonal systems for the 
components $:“I and each system may be solved, for example, using an algorithm 
given by Ahlberg et al. [S]. 

3. PERIODIC CONDITIONS IN BOTH i ANDY DIRECTIONS 

For this case, when j is even. we define the vectors $j and rj by relations (3) and. 
when j is odd, we let \~r~ and sj be the m component vectors 

and 
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Thus, taking account of the periodicity in the i-direction, the equations 
corresponding to (5) and (6) may be written as 

-6~~++~-z+(Pi+r+(P+Ij(yri~I+Wj+Ij=r~ (16) 

-6yr;+yrj~,+yrj+z+(PT+z)(~j-I+~,+I)=Sj, (17) 

where P is the r?z x m permutation matrix given by 

OlO..O 
0010~0 
. . . 

0 . . . 0 1 
1 0 0 ’ 0 0 I. (18). 

It follows that the totality of equations for j even, assuming that the domain is 
also periodic in the j direction, may be written in the form (10) with 

where 

u=z(nf- 15zj, V=M+161, 

-2 10 0 
1-2 1 0 

M=(P+I)(P=+I)-41= 
0 l-2 1 

1.. ‘. 

0 0 
1 0 . . 

s 0 

1 
0 0 1 

1 -2 

0 1 .I 1 
-2 

(19) 

(20) 

The appropriate eigenvector expansions thus require the use of the standard real 
periodic Fourier transform. Furthermore, for doubly periodic conditions, the 
solution of Poisson’s equation involves an arbitrary additive constant and this is 
reflected in the fact that the system of equations (10) is singular. It is easily verified 
that the relevant singular system for the Fourier harmonics corresponds to the case 
of a zero eigenvalue of the matrix M. The right-hand sides of (10) are here given by 
(11) with the matrix B replaced by P + I and the vector r,? replaced by rj? 
j=o, 2, . . . , J. The equations for j odd are of the same form as (14) with the matrix 
BT replaced by PT + I. 
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4. MODEL PROBLEMS AND COMPUTATIONAL RESIJLTS 

The solution domain was chosen as 0 <x d 1, 0 <J’ 6 I/,.,‘? with grid sizes 
defined by 

,I = ?:’ - 1 L . 

where~~4,1iz=(n+l)i.2,J=n-l.and~~=l:rll,,’5. 
For the problem with periodic conditions in the J direction we chose 

q(x, y) = e”(sin’ +‘%ry + 67~~ cos 2 t/.&+rj$ 

for which 

i31) 

(22) 

4(x, ~1) = e’ sin2 x/ ~3ny, (23) 

and the appropriate Dirichlet conditions on i= 0, n $ 1 were computed from (23). 
For the doubly periodic problem we chose 

for which 

so that 

q$(X, y ) = sin 27c.x COS 2 ..J ,?i 7rJ, (25) 

- ’ 11 q d.x dr = 0, i26) 

where (26) denotes integration over the solution domain. 
For the purposes of comparison with (25), the arbitrary constant in the f;nal 

solution was chosen so that the mean of the computed solution values was equal to 
the mean of grid-point values of (25). In general the mean solution value may be 
known from physical considerations or may be truly arbitrary. The relevant 

TABLE1 

Va!ues of Maximum Modulus Error and RMS Error for the Two Problems Considered 

Periodic j direction Doubly periodic 

i ’ 111 Max mod error RMS error Mar mod error R.W.3 error 

4 8 7.08, -4 3.97, -4 1.02. -3 5.56, -1 
5 I6 4.31. -5 2.39, -5 6.55. -5 3.33. -5 
6 32 1.75. -6 1.38, -6 4.12. -6 3.07, -6 
7 64 1.7’. -7 9.18. -8 2.57. -7 1.29, -7 
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TABLE II 

Execution Times for the Three Types of Boundary Conditions 

)’ m Periodic,j-direction Doubly periodic Dirichlet 

4 8 0.08 1 0.046 0.057 
5 16 0.17 0.18 0.25 
6 3? 0.88 0.65 0.75 
I 64 3.63 2.51 2.77 

singular system of Eqs. (10) was solved by choosing one Fourier harmonic 
arbitrarily and several different values of the arbitrary harmonic were used in test 
runs with negligible observed effect on the computed errors in the final solution. 
The overall computational procedure for both problems follows the same lines as 
that described in [ 11. The programs were written in Fortran 77 and run on a Prime 
9950 machine with approximately 13 decimal digit precision. 

Table I shows values of maximum modulus error and RMS error for various 
values of 11. For both problems the maximum modulus error and RMS error 
decrease by a factor of approximately 16 between consecutive values of y, thus con- 
firming the 0(h3) nature of the hexagonal grid approximation. Table II shows 
execution times for the two problems together with the corresponding times for the 
Dirichlet problem, taken from [ 11. The problem with periodic conditions in the j 
direction uses the same shifted sine transform (Swarztrauber [6]) as the Dirichlet 
case but requires rather more arithmetic to solve the cyclic pentadiagonal and 
tridiagonal systems than systems which are simply pentadiagonal or tridiagonal. 
Thus we anticipate that the execution times for this problem should be somewhat 
greater than for the corresponding Dirichlet problem and this turns out to be the 
case. The doubly periodic problem uses the same cyclic pentadiagonal and 
tridiagonal solvers as the singly periodic case but employs a standard real periodic 
transform. This problem has the smallest execution times of the three cases 
considered in Table II, for all 11, thus indicating that the preprocessing and 
postprocessing required for the shifted sine transform in the other cases is more 
expensive than the extra arithmetic involved in solving cyclic systems. 

For the problems with Dirichlet conditions in the i direction discussed here and 
in [l], a reduction in the observed execution times could be achieved if an 
algorithm, recently proposed by Swarztrauber [7], were used for the shifted sine 
transform in which pre- or post-processing is not required. 
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